4,819 research outputs found

    Symmetries of Two Higgs Doublet Model and CP violation

    Full text link
    We use the invariance of physical picture under a change of Lagrangian, the reparametrization invariance in the space of Lagrangians and its particular case -- the rephrasing invariance, for analysis of the two-Higgs-doublet extension of the SM. We found that some parameters of theory like tan beta are reparametrization dependent and therefore cannot be fundamental. We use the Z2-symmetry of the Lagrangian, which prevents a phi_1 phi_2 transitions, and the different levels of its violation, soft and hard, to describe a physical content of the model. In general, the broken Z2-symmetry allows for a CP violation in the physical Higgs sector. We argue that the 2HDM with a soft breaking of Z2-symmetry is a natural model in the description of EWSB. To simplify an analysis we choose among different forms of Lagrangian describing the same physical reality a specific one, in which the vacuum expectation values of both Higgs fields are real. A possible CP violation in the Higgs sector is described by using a two-step procedure with the first step identical to a diagonalization of mass matrix for CP-even fields in the CP conserved case. We find very simple necessary and sufficient condition for a CP violation in the Higgs sector. We determine the range of parameters for which CP violation and Flavor Changing Neutral Current effects are naturally small,what corresponds to a small dimensionless mass parameter nu= Re m_{12}^2/(2v1v2). We discuss how for small nu some Higgs bosons can be heavy, with mass up to about 0.6 TeV, without violating of the unitarity constraints. We discuss main features of the large nu case, which corresponds for nu -> infty to a decoupling of heavy Higgs bosons.Comment: 27 pages, extended discussion, references added, one figure, Revtex

    Single Leptoquark Production at e+e−e^+e^- and γγ\gamma\gamma Colliders

    Full text link
    We consider single production of leptoquarks (LQ's) at e+e−e^+e^- and γγ\gamma\gamma colliders, for two values of the centre-of-mass energy, s=500\sqrt{s}=500 GeV and 1 TeV. We find that LQ's which couple within the first generation are observable for LQ masses almost up to the kinematic limit, both at e+e−e^+e^- and γγ\gamma\gamma colliders, for the LQ coupling strength equal to αem\alpha_{em}. The cross sections for single production of 2nd2^{nd}- and 3rd3^{rd}-generation LQ's at e+e−e^+e^- colliders are too small to be observable. In γγ\gamma\gamma collisions, on the other hand, 2nd2^{nd}-generation LQ's with masses much larger than s/2\sqrt{s}/2 can be detected. However, 3rd3^{rd}-generation LQ's can be seen at γγ\gamma\gamma colliders only for masses at most ∼s/2\sim\sqrt{s}/2, making their observation more probable via the pair production mechanism.Comment: plain TeX, 14 pages, 6 figures (not included but available on request), some minor changes to the text, one reference added, figures and conclusions unchanged, UdeM-LPN-TH-93-152, McGill-93/2

    Differential operators and Cherednik algebras

    Get PDF
    We establish a link between two geometric approaches to the representation theory of rational Cherednik algebras of type A: one based on a noncommutative Proj construction, used in [GS]; the other involving quantum hamiltonian reduction of an algebra of differential operators, used in [GG]. In the present paper, we combine these two points of view by showing that the process of hamiltonian reduction intertwines a naturally defined geometric twist functor on D-modules with the shift functor for the Cherednik algebra. That enables us to give a direct and relatively short proof of the key result, [GS, Theorem 1.4] without recourse to Haiman's deep results on the n! theorem. We also show that the characteristic cycles defined independently in these two approaches are equal, thereby confirming a conjecture from [GG].Comment: 37 p

    Effective Potential for Scalar Field in Three Dimensions: Ising Model in the Ferromagnetic Phase

    Get PDF
    We compute the effective potential Veff(ϕ)V_{\rm eff}(\phi) for one-component real scalar field ϕ\phi in three Euclidean dimensions (3D) in the case of spontaneously broken symmetry, from the Monte Carlo simulation of the 3D Ising model in external field at temperatures approaching the phase transition from below. We study probability distributions of the order parameter on the lattices from 30330^3 to 74374^3, at L/ξ≈10L/\xi \approx 10. We find that, in close analogy with the symmetric case, ϕ6\phi^6 plays an important role: Veff(ϕ)V_{\rm eff}(\phi) is very well approximated by the sum of ϕ2\phi^2, ϕ4\phi^4 and ϕ6\phi^6 terms. An unexpected feature is the negative sign of the ϕ4\phi^4 term. As close to the continuum limit as we can get (ξ≈7.2\xi \approx 7.2), we obtain Leff≈12∂μϕ∂μϕ+1.7(ϕ2−η2)2(ϕ2+η2). {\cal L}_{\rm eff} \approx {1 \over 2} \partial_\mu \phi \partial_\mu \phi + 1.7 (\phi^2 - \eta^2)^2 (\phi^2 + \eta^2). We also compute several universal coupling constants and ratios, including the combination of critical amplitudes C−(f1−)−3B−2C^- (f_1^-)^{-3} B^{-2}.Comment: 13 pages, 5 Postscript figures, uses epsf.st

    High Energy Photon-Photon Collisions at a Linear Collider

    Full text link
    High intensity back-scattered laser beams will allow the efficient conversion of a substantial fraction of the incident lepton energy into high energy photons, thus significantly extending the physics capabilities of an electron-electron or electron-positron linear collider. The annihilation of two photons produces C=+ final states in virtually all angular momentum states. The annihilation of polarized photons into the Higgs boson determines its fundamental two-photon coupling as well as determining its parity. Other novel two-photon processes include the two-photon production of charged lepton pairs, vector boson pairs, as well as supersymmetric squark and slepton pairs and Higgstrahlung. The one-loop box diagram leads to the production of pairs of neutral particles. High energy photon-photon collisions can also provide a remarkably background-free laboratory for studying possibly anomalous WWW W collisions and annihilation. In the case of QCD, each photon can materialize as a quark anti-quark pair which interact via multiple gluon exchange. The diffractive channels in photon-photon collisions allow a novel look at the QCD pomeron and odderon. Odderon exchange can be identified by looking at the heavy quark asymmetry. In the case of electron-photon collisions, one can measure the photon structure functions and its various components. Exclusive hadron production processes in photon-photon collisions test QCD at the amplitude level and measure the hadron distribution amplitudes which control exclusive semi-leptonic and two-body hadronic B-decays.Comment: Invited talk, presented at the 5th International Workshop On Electron-Electron Interactions At TeV Energies, Santa Cruz, California, 12-14 December 200

    Closed orbits of a charge in a weakly exact magnetic field

    Full text link
    We prove that for a weakly exact magnetic system on a closed connected Riemannian manifold, almost all energy levels contain a closed orbit. More precisely, we prove the following stronger statements. Let (M,g)(M,g) denote a closed connected Riemannian manifold and σ\sigma a weakly exact 2-form. Let ϕt\phi_{t} denote the magnetic flow determined by σ\sigma, and let cc denote the Mane critical value of the pair (g,σ)(g,\sigma). We prove that if k>ck>c, then for every non-trivial free homotopy class of loops on MM there exists a closed orbit with energy kk whose projection to MM belongs to that free homotopy class. We also prove that for almost all k<ck<c there exists a closed orbit with energy kk whose projection to MM is contractible. In particular, when c=∞c=\infty this implies that almost every energy level has a contractible closed orbit. As a corollary we deduce that if σ\sigma is not exact and MM has an amenable fundamental group (which implies c=∞c=\infty) then there exist contractible closed orbits on almost every energy level.Comment: 25 pages. v3 - minor corrections, this version to appear in PJ

    Tree-level unitarity constraints in the most general 2HDM

    Full text link
    We obtain tree-level unitarity constraints for the most general Two Higgs Doublet Model (2HDM) with explicit CP-violation. We briefly discuss correspondence between possible violation of tree level unitarity limitation and physical content of the theory.Comment: 6 pages, no figure

    Detection of Minimal Supersymmetric Model Higgs Bosons in \gam\gam Collisions: Influence of SUSY Decay Modes

    Full text link
    We demonstrate that supersymmetric decay modes of the neutral Higgs bosons of the MSSM could well make their detection extremely difficult when produced singly in \gam\gam collisions at a back-scattered laser beam facility.Comment: 12 pages, requires phyzzx.tex and tables.tex, full postscript file including embedded tables available via anonymous ftp at ucdhep.ucdavis.edu as [anonymous.gunion]gamgamsusy.ps, preprint UCD-94-3

    Economic impact of large public programs: The NASA experience

    Get PDF
    The economic impact of NASA programs on weather forecasting and the computer and semiconductor industries is discussed. Contributions to the advancement of the science of astronomy are also considered
    • …
    corecore